skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keeley, Tylor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vulnerability to warming is often assessed using short‐term metrics such as the critical thermal maximum (CTMAX), which represents an organism's ability to survive extreme heat. However, the long‐term effects of sub‐lethal warming are an essential link to fitness in the wild, and these effects are not adequately captured by metrics like CTMAX.The meltwater stonefly,Lednia tumana, is endemic to high‐elevation streams of Glacier National Park, MT, USA, and has long been considered acutely vulnerable to climate‐change‐associated stream warming. As a result, in 2019, it was listed as Threatened under the U.S. Endangered Species Act. This presumed vulnerability to warming was challenged by a recent study showing that nymphs can withstand short‐term exposure to temperatures as high as ~27°C. But whether they also tolerate exposure to chronic, long‐term warming remained unclear.By measuring fitness‐related traits at several ecologically relevant temperatures over several weeks, we show thatL. tumanacannot complete its life‐cycle at temperatures only a few degrees above what some populations currently experience.The temperature at which growth rate was maximized appears to have a detrimental impact on other key traits (survival, emergence success and wing development), thus extending our understanding ofL. tumana's vulnerability to climate change.Our results call into question the use of CTMAXas a sole metric of thermal sensitivity for a species, while highlighting the power and complexity of multi‐trait approaches to assessing vulnerability. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less